Math 308L - Autumn 2017 Midterm 2 November 15, 2017

KEY

Question	Points	Score
1	12	
2	12	
3	12	
4	12	
5	12	
Total:	60	

- There are 5 problems on this exam. Be sure you have all 5 problems on your exam.
- The final answer must be left in exact form. Box your final answer.
- You are allowed the TI-30XIIS calculator. It is possible to complete the exam without a calculator.
- You are allowed a single sheet of 2-sided handwritten self-written notes.
- You must show your work to receive full credit. A correct answer with no supporting work will receive
 a zero.
- Use the backsides if you need extra space. Make a note of this if you do.
- Do not cheat. This exam should represent your own work. If you are caught cheating, I will report you to the Community Standards and Student Conduct office.

Conventions:

- I will often denote the zero vector by 0.
- \bullet When I define a variable, it is defined for that whole question. The A defined in Question 1 is the same for each part.
- I often use x to denote the vector (x_1, x_2, \dots, x_n) . It should be clear from context.
- Sometimes I write vectors as a row and sometimes as a column. The following are the same to me.

$$(1,2,3)$$
 $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$.

• I write the evaluation of linear transforms in a few ways. The following are the same to me.

$$T(1,2,3)$$
 $T((1,2,3))$ $T\begin{pmatrix} \begin{bmatrix} 1\\2\\3 \end{bmatrix} \end{pmatrix}$

- 1. Answer the following parts:
 - (a) (6 points) Let

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 3 \end{bmatrix}.$$

i. What is A^{-1} ?

Solution:

$$A^{-1} = \begin{bmatrix} 1 & -3 & 1/3 \\ 0 & 1 & -1/3 \\ 0 & 0 & 1/3 \end{bmatrix}$$

ii. What is $det(2 \cdot A^{-1})$?

Solution:

$$\det(2 \cdot A^{-1}) = 2^3 \det(A^{-1}) = 8/3.$$

(b) (6 points) (Tricky.) Let

$$B = \begin{bmatrix} 1 & 1 & 11 \\ -1 & 0 & 15 \\ 1 & 2 & 2017 \end{bmatrix}, \quad y = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}.$$

It turns out that y is in the span of the first and second column of B and B is invertible. What is $B^{-1}y$? (Hint: Despite appearances, this is a quick computation.)

Solution: Denote the columns of B by b_1, b_2, b_3 . Let $B^{-1}y = x$. Then Bx = y and we are trying to find x. This amounts to solving a linear system. If $x = (x_1, x_2, x_3)$, then

$$x_1b_1 + x_2b_2 + x_3b_3 = y.$$

But we know that y is in the span of b_1 and b_2 so $x_3 = 0$ and we are left with

$$x_1b_1 + x_2b_2 = y.$$

This yields the much easier linear system

$$\begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & -2 \\ 1 & 2 & 0 \end{bmatrix}$$

which has solutions $x_1 = 2$ and $x_2 = -1$. So altogether, we have

$$(x_1, x_2, x_3) = (2, -1, 0).$$

- 2. Give an example of each of the following. If it is not possible, write "NOT POSSIBLE".
 - (a) (3 points) Give an example of 2 linear transforms $T:\mathbb{R}^3\to\mathbb{R}^2$ and $S:\mathbb{R}^2\to\mathbb{R}^3$ such that $T\circ S:\mathbb{R}^2\to\mathbb{R}^2$ is invertible.

Solution: Let T(x,y,z)=(x,y) and S(x,y)=(x,y,0). Then $(T\circ S)(x,y)=(x,y)$ which is the identity transform which is invertible.

(b) (3 points) Give an example of a basis for \mathbb{R}^3 such that every basis element lies in the plane x+y+z=0.

Solution: NOT POSSIBLE. The set x+y+z=0 is a 2-dimensional subspace. There is no basis of \mathbb{R}^3 that lie in a 2-dimensional subspace.

(c) (3 points) Give an example of two different matrices A and B such that col(A) = col(B) and null(A) = null(B).

Solution: Pick your favorite natural number n. Let $A = I_n$ and $B = 2 \cdot I_n$. Then $col(A) = col(B) = \mathbb{R}^n$ and $null(A) = null(B) = \{0\}$.

(d) (3 points) Give an example of two 2×2 matrices A and B such that $\det(A+B) \neq \det(A) + \det(B)$.

Solution: Let $A = I_2$ and $B = I_2$. Then

det(A+B) = 4 and det(A) = det(B) = 1.

- 3. Let v = (1, 1, -1) and $L_v = \text{span}(\{v\})$. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transform that is the projection onto L_v . This tells us 2 things about T:
 - T(x) = x if $x \in L_v$,
 - T(x) = 0 if x is orthogonal to v (so if $x \cdot v = 0$).

There exists a matrix A such that T(x) = Ax. The goal of this problem is to determine A.

(a) (4 points) Give a basis for \mathbb{R}^3 that contains v and 2 vectors orthogonal to v. (Hint: Recall that $(a_1, a_2, a_3) \cdot (b_1, b_2, b_3) = a_1b_1 + a_2b_2 + a_3b_3$.)

Solution: There are two methods to find 2 vectors orthogonal to v.

- Eyeball it.
- Find 2 particular solutions to $v \cdot (x, y, z) = x + y z = 0$.

We find that (1,0,1) and (0,1,1) are distinct vector orthogonal to v. A basis for \mathbb{R}^3 is then given by

$${v, (1, 0, 1), (0, 1, 1)}.$$

- (b) (4 points) Answer the following questions about A.
 - i. Give a basis for null(A).

Solution: The null space of A is the kernel of T. We see that this is spanned by $\{(1,0,1),(0,1,1)\}.$

ii. Give a basis for col(A).

Solution: We can see that T sends everything to L_v so a basis for col(A) = range(T) is $\{v\}$.

iii. What is the rank of A?

Solution: From the last part, we can see that the rank is 1.

iv. What is $\det(A)$?

Solution: The determinant of A is zero as T is not invertible.

(c) (4 points) What is A? You may express A as a product of matrices and their inverses.

Solution: From past worksheets and lectures, we know that if $\{u_1, \ldots, u_n\}$ is a basis for \mathbb{R}^n and $T: \mathbb{R}^n \to \mathbb{R}^n$ is defined so that $T(u_i) = v_i$ for $i = 1, \ldots, n$ then the corresponding matrix for T is given by VU^{-1} , where $V = [v_i]$ and $U = [u_i]$.

In this case, we have that T(v) = v and T(1,0,1) = (0,0,0) and T(0,1,1) = (0,0,0). The corresponding matrix is

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix}^{-1}.$$

4. Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transform defined by T(x) = Ax, where A and its reduced echelon form are defined as follows:

$$A = \begin{bmatrix} 1 & 2 & -1 & -3 \\ 2 & 4 & 0 & -4 \\ 3 & 6 & -1 & -7 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & -2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = B.$$

To save time when writing the solutions, let's denote the columns of A by a_1, a_2, a_3, a_4 .

(a) (3 points) What is a basis for row(A)?

Solution: A basis for row(A) is given by the 2 nonzero rows of B.

(b) (3 points) What a basis for the range of T?

Solution: A basis for the range is given by $\{a_1, a_3\}$.

(c) (3 points) Write the columns of A corresponding to free variables as a linear combination of pivot columns of A.

Solution: Relations among the columns of A are exactly the relations among the columns of B. This means

$$a_2 = 2a_1$$
 and $a_4 = -2a_1 + a_3$.

(d) (3 points) What is a basis for ker(T)?

Solution: The general solution to A is $x = s_1(-2, 1, 0, 0) + s_2(2, 0, -1, 1)$. This means that a basis for $\ker(T)$ is $\{(-2, 1, 0, 0), (2, 0, -1, 1)\}$.

5. Let A and B be equivalent matrices given by

$$A = \begin{bmatrix} 2 & 4 & -1 & -2 \\ -1 & -3 & -1 & 0 \\ 1 & 1 & 2 & 2 \\ 2 & 6 & 2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & -1/2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = B.$$

Let a_1, a_2, a_3, a_4 be the columns of A. Let $S = \text{span}(\{a_1, a_2\})$ and $T = \text{span}(\{a_3, a_4\})$.

(a) (2 points) What is $\dim(\text{span}(\{a_1, a_2, a_3, a_4\}))$?

Solution: This is asking for the rank of A which is 3 because there are 3 nonzero rows of B.

(b) (2 points) What is a basis for null(A)?

Solution: The general solution to A is $x = s_1(-1/2, 1/2, -1, 1)$. This means that a basis for null(A) is $\{(-1/2, 1/2, -1, 1)\}$.

(c) (2 points) Denote that intersection of S and T by $S \cap T$. This is the subspace of vectors that are in span($\{a_1, a_2\}$) and in span($\{a_3, a_4\}$). What is dim($S \cap T$)?

Solution: We can see that S and T are distinct 2-dimensional spaces in col(A) which is a 3-dimensional space. This means that the intersection is 1-dimensional. This is the more geometric idea. See the next answer for the more algebraic one.

(d) (6 points) (Hard.) What is a basis for $S \cap T$?

Solution: We will investigate what it means for a vector to be in $S \cap T$. Suppose $v \in S \cap T$. This means that we can write v as a linear combination of a_1, a_2 and as a linear combination of a_3, a_4 . So there exists scalar c_1, c_2, c_3, c_4 such that

$$v = c_1 a_1 + c_2 a_2 = c_3 a_3 + c_4 a_4.$$

The goal is to determine the constraints on c_1, c_2, c_3, c_4 . By rearranging, this means that

$$c_1a_1 + c_2a_2 - c_3a_3 - c_4a_4 = 0.$$

This means that $(c_1, c_2, -c_3, -c_4) \in \text{null}(A)$. Then $(c_1, c_2, -c_3, -c_4) = s_1(-1/2, 1/2, -1, 1)$ for some s_1 . So

$$v = -1/2s_1a_1 + 1/2s_1a_2 \tag{1}$$

for some s_1 . The equation (1) characterizes all $v \in S \cap T$. We can see that it is a 1-dimensional space. A basis is obtained by plugging in any nonzero s_1 into (1) so a basis for $S \cap T$ is $\{a_1 - a_2\}$.